Long Short-Term Memory, Algorithms for Social Justice, and External Cognition (by Silly Rabbit)

DARPA funds graph analytics processor

Last week I posted a bunch of links pointing towards quantum computing. However, there are also other compute initiatives which also offer significant potential for “redefining intractable” for problems such as graph comparison, for example, DARPA’s HIVE which aims to create a 1000x improvement in processing speed (and at much lower power) on this problem. Write-up on EE Times of the DARPA HIVE program here.

Exploring long short-term memory networks

Nice explainer on LSTMs by Edwin Chen: “The first time I learned about LSTMs, my eyes glazed over. Not in a good, jelly donut kind of way. It turns out LSTMs are a fairly simple extension to neural networks, and they’re behind a lot of the amazing achievements deep learning has made in the past few years.” (Long, detailed and interesting blog post, but even if you just read the first few page scrolls still quite worthwhile for the intuition of the value and function of LSTMs.)

FairML: Auditing black box predictive models

Machine learning models are used for important decisions like determining who has access to bail. The aim is to increase efficiency and spot patterns in data that humans would otherwise miss. But how do we know if a machine learning model is fair? And what does fairness in machine learning mean? Paper exploring these questions using FairML, a new Python library that audits black-box predictive models.

Fast iteration wins prizes

Great Quora answer on “Why has Keras been so successful lately at Kaggle competitions?” (By the author of Keras, an open source neural net library designed to enable fast experimentation). Key quote: ”You don’t lose to people who are smarter than you, you lose to people who have iterated through more experiments than you did, refining their models a little bit each time. If you ranked teams on Kaggle by how many experiments they ran, I’m sure you would see a very strong correlation with the final competition leaderboard.” 

Language from police body camera footage shows racial disparities in officer respect

This paper presents a systematic analysis of officer body-worn camera footage, using computational linguistic techniques to automatically measure the respect level that officers display to community members.

External cognition

Large-scale brainlike systems are possible with existing technology — if we’re willing to spend the money — proposes Jennifer Hassler in A Road Map for the Artificial Brain.

Pretty well re-tweeted and shared already, but interesting nonetheless: External cognition: The Thoughts of a Spiderweb.

And related somewhat related (or at least a really nice AR UX for controlling synthesizers), a demonstration of “prosthetic knowledge” — check out the two minute video with sound at the bottom of the page – awesome stuff!

PDF Download (Paid Subscription Required): http://www.epsilontheory.com/download/16010/

To learn more about Epsilon Theory and be notified when we release new content sign up here. You’ll receive an email every week and your information will never be shared with anyone else.

Start the discussion at the Epsilon Theory Forum

The Latest From Epsilon Theory

DISCLOSURES

This commentary is being provided to you as general information only and should not be taken as investment advice. The opinions expressed in these materials represent the personal views of the author(s). It is not investment research or a research recommendation, as it does not constitute substantive research or analysis. Any action that you take as a result of information contained in this document is ultimately your responsibility. Epsilon Theory will not accept liability for any loss or damage, including without limitation to any loss of profit, which may arise directly or indirectly from use of or reliance on such information. Consult your investment advisor before making any investment decisions. It must be noted, that no one can accurately predict the future of the market with certainty or guarantee future investment performance. Past performance is not a guarantee of future results.

Statements in this communication are forward-looking statements. The forward-looking statements and other views expressed herein are as of the date of this publication. Actual future results or occurrences may differ significantly from those anticipated in any forward-looking statements, and there is no guarantee that any predictions will come to pass. The views expressed herein are subject to change at any time, due to numerous market and other factors. Epsilon Theory disclaims any obligation to update publicly or revise any forward-looking statements or views expressed herein. This information is neither an offer to sell nor a solicitation of any offer to buy any securities. This commentary has been prepared without regard to the individual financial circumstances and objectives of persons who receive it. Epsilon Theory recommends that investors independently evaluate particular investments and strategies, and encourages investors to seek the advice of a financial advisor. The appropriateness of a particular investment or strategy will depend on an investor’s individual circumstances and objectives.